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We show that a singular perturbation expansion for the solution of a 
parabolic equation can be applied to some Fokker-Planck equations 
arising in the analysis of the effects of noise on laser operations. A general- 
ization to the approximate solution of the Smoluchowski equation, when 
diffusion is a small effect, is given. 

KEY W O R D S  : Fokker-Planck equations ; singular perturbations ; Smolu- 
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1.  I N T R O D U C T I O N  

The theory  o f  the effects o f  noise on the ope ra t ion  o f  lasers has  been o f  
cons iderable  recent interest.  M a n y  aspects  o f  the theory  are  discussed in a 
review art icle by  Risken.  (1~ In  a recent  art icle W a n g  and  L a m b  (2~ have der ived 
re levant  F o k k e r - P l a n c k  equat ions  tha t  fol low f rom a semMass ica l  analysis  
o f  the  effects o f  shot  and  thermal  noise on lasers. The  results  o f  their  analysis  
are expressed in terms o f  Gauss ian  d is t r ibut ions  tha t  a p p r o x i m a t e  to the 
solut ion o f  the F o k k e r - P l a n c k  equat ions.  W a n g  and L a m b  derive this 
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solution by ad hoc techniques. It is the purpose of this paper to show that 
approximate solutions to Fokker-Planck equations can be derived system- 
atically provided that diffusion broadening of lines is small during the times 
of interest. The derivations rest on a singular perturbation theory developed 
by Cohen and Lewis, (s), Cohen et al., (4) and Weiss and Dishon (5,6) for linear 
diffusion equations. These techniques will be used to justify the solution 
given by Wang and Lamb, as well as to derive an approximate solution to a 
second equation given but not solved in their work. Finally, we consider the 
application of the singular perturbation technique to derive a lowest order 
approximation to the Smoluchowski equation, again when diffusion broaden- 
ing is a small effect. 

2. L O W E S T  O R D E R  A P P R O X I M A T I O N  

To begin with we summarize a derivation of the lowest order approxima- 
tion for the one-dimensional Fokker-Planck equation with time-independent 
coefficients. This approximation will be applied later to the Wang-Lamb 
equation. We suppose that the Fokker-Planck equation can be written in 
terms of a dimensionless time ~- and dimensionless space variable x as 

O--r = s 8x---- 5 ( f ( x ) p )  - -~x (g(x )p)  (1) 

where x is unrestricted, - ~  ~< x ~< oo. So far no one has presented an 
analogous development that would be applicable when there are boundaries 
that exert an effect. The basic assumptions in the following analysis are that 
f ( x )  is positive and that el(x)  << g(x).  In typical chemical separation systems 
(velocity sedimentation, gel pore chromatography, or electrophoresis) e is 
generally less than 10-2. Define the variable ~ by 

= f x  du 
jxo g(u) " (2) 

and the inverse, x = H(~ + r). In the absence of diffusion, E = 0, the position 
of a delta function initially at x0 is given by x,(~-) = H(r) ,  where x,(0) = Xo. 
If  we define a new dependent variable r (x ,  ~) by 

F(x, ~-) = g(x )p (x ,  ~-) (3) 

and 

F(u)  = f ( H ( u ) ) ,  G(u) = g (H(u) )  (4) 

then Eq. (1) is transformed to 

~--; = ~ ~ a (~  + ,) 0~ \ ~ - ~  + ,)  r (5) 
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The idea now is to notice that since when ~ = 0 a pulse travels along the 
characteristic ~: = 0, we can expand all of the functions appearing in this 
last equation around ~: = 0. In particular, the first approximation to the 
solution of  this last equation is given by the solution to 

8Fo F(r)  82F o 
.... 8r = e-d(z)  0r 2 (6) 

which is just a diffusion equation in terms of the time variable 

f ]  F(u) , A(z) = G ~  au (7) 

When p(x, 0) = 8(x - x0) we have the initial condition F(~, 0) = G(~) 
8[H(~:) - x0], and the solution to Eq. (6) is 

ro(~, 7) = [4~reA(~_)]l,2 exp 4e--~(r) (8) 

Higher order terms in a systematic expansion can be found by following the 
analysis of Ref. 5, but these are not required for the following applications. 
The leading order terms of the first moment and the variance are (5) 

-. [ F(r)  F(0) ] ,v, x 
~(~) = H(~) + A(~)H(~) + La~(~) a - ~ ) j n ~ )  

f ]  F(u) aG(u)}e+ 0(~ 2) (9) + H('~) a - ~  

,~2("r) = / ~ 2 ( ~ )  - p. 2(~.) = 2EA(.,.)G2(~.) + O(e2) 

Notice that although Fo(~:, 7) is a Gaussian in the variable ~, the corre- 
sponding density in terms of the original space variable x is not necessarily 
Gaussian. In order to transform from ~: to x we have 

a~ ( ro(~, ~)] (lo) 
po(x, ~) = ro(~, ~) ~ = g(x) l 

in which ~ is to be expressed in terms of x in Fo(6:, ~-). The identity of this last 
equation also ensures that normalization is preserved since it implies that 

f? F0(s c, r) d~ = 1 = po(X, .r) dx (11) 
c o  c o  

This simple observation can eliminate potential confusion since the po(x, -r) 
corresponding to F0(~, T) often looks rather complicated. 

Although the formula for po(x, -r) corresponding to Fo(~, 7) in Eq. (8) 
is not in general a Gaussian density in x, when e is sufficiently small the 
Gaussian density is a good approximation. To see this we expand ~(x, ~-) 
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around x = H(r) ,  retaining lowest order terms: 

~(x, ~) ~ ~(H(~), ~) + (x - H(~)) ~ x=~.~ - x -6(~)H(') (12) 

and g(x)  ~ G(T), SO that po(x, ~-) becomes, in this approximation 

1 Ix - n ( ~ ) p  (13) 
po(X, ,r) ~ G(r)[4rreA(,)]l/2 exp 4,A(~.)G2(~. ) 

corresponding to a Gaussian with a mean equal to H(~-) and a variance given 
by ~2 = 2eA(~_)G2(~.) as in Eq. (9). 

The preceding analysis can be generalized to deal with equations in which 
the coefficients may depend on time as well as on the space variable. In this 
more general case one cannot write out the explicit expression for ~: as in 
Eq. (2), but must leave it in terms of the solution to an ordinary differential 
equation. Since the applications to be discussed do not require this refinement, 
we restrict our considerations strictly to equations of  the form of  Eq. (I) and 
its analogs. 

3. A P P L I C A T I O N  TO THE LASER E Q U A T I O N S  

Let us consider one of the several equations discussed by Wang and 
Lamb/2~ In a discussion of thermal noise they arrive at a Fokker-Planck 
equation for the probability density p(E,  t)  of the electric field amplitude of a 
perfectly tuned laser at time t, 

= c~ O2p ~E [(c,E - /3Ea)p] (14) 
St /3T ~E 2 

where ~,/~, and T (where T has dimensions of  time) are constants, and E is 
the field. Equation (14) can be made dimensionless by dividing both sides by 

and setting ~- = c~t and E = x(c@) 1/2. This puts it in the form of Eq. (1), 
where 

e = 1/(c~-), f ( x )  = 1, g(x)  = x(1 - x 2) (15) 

For shot noise in a typical laser Wang and Lamb find that E ~ 2 x 10 -6 
and for thermal noise e ~ 2 x 10 -1~ both well within the purview of the 
singular perturbation theory., which has been shown to be useful for e as 
large as 0.05. (a~ 

In the absence of noise the dimensionless field H(~-) is the solution to 

/ : / =  H(1 - H 2) (16) 

subject to H(0) --- Xo. The solution is easily found to be 

H('O = Xo/[Xo 2 + (1 - x02)e-2q 1/2 (17) 
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which approaches a limiting value (for Xo > 0) equal to 1. The function GO') 
of Eq. (4) can be written 

G(T) = H(~')[1 -- H2(r)] (18) 

so that the time variable A(T) can be found by substituting Eq. (4) into Eq. (7). 
Since ~ is so small, we can use the Gaussian approximation in Eq. (13) with 
a mean given by H(T)  and a variance 

a2('r) = 28e-4~{1Xo6(e 4~ -- 1) + ~Xo4(1 -- Xo2)(e 2~ -- 1) 
+ 3Xo2(1 - Xo2)% - -b -~(1 - Xo2)3(1 - e-20}[Xo 2 + (1 - Xo2)e-2q -3 

(19) 

This value of ~( r )  agrees with that given by Wang and Lamb, who start from 
the equation (in our notation) a + 2(1 - 3H2)~ = 2~, which can be shown 
to lead to Eq. (19). Thus the method of solution of Wang and Lamb is 
equivalent to the lowest order approximation given by the present perturba- 
tion technique, valid for extremely small E. 

Notice that the approximate solution just outlined cannot be extrapolated 
to times at which the profile approaches its equilibrium shape. This is because 
at sufficiently long times the condition Ef(x) << g(x)  is violated since g(x)  = 0 
at equilibrium. It is easily verified that the equilibrium solutions computed 
from Eq. (8) and directly from Eq. (14) differ. The more detailed theory as 
developed by Hempstead and Lax (7) and Lax (8) is required for the discussion 
of the approach to equilibrium. 

It is possible, by an extension of the technique given above, to derive an 
asymptotic estimate of the solution to the joint Fokker-Planck equation for 
the amplitude and phase of a laser under the same assumptions as given 
above. Let ~ be the phase angle and let x be the reduced amplitude variable 
with scaling as in the earlier example. Then Wang and Lamb have shown 
that the Fokker-Planck equation in dimensionless variables is 

1 ap] 8p a I x ( 1 -  x2)p] + ~[~P2 + ~ ~'~2j (20) 
8.r 8x  

The first step in the solution is to replace x by ~ according to the relation in 
Eq. (2). The resulting equation for F(~:, % ~) = G(~ + ~-)p(~, % ~-) is easily 
found to be 

to be solved subject to an initial condition F(~:, % 0). As before, the first 
approximate solution is obtained by setting ~: = 0 in the coefficients 
I /G(~ + ~-) and 1/H2(# + -c). We then find that Fo is the solution to 

8Fo [ 1 82Fo 1 82ro] (22) 
8--7 = ~ ~ ( ~ )  a~ ~ + H~(~-----3 8 ~ j  
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which we solve subject to the initial condition ro(~, % O) = r(~:, 9, 0). 
This is done by assuming a solution of the form 

P0(~, % r) = ~ C~(~:, ~-)e ' ~  (23) 
~ = - - c o  

from which it follows that the C.(~:, ~-) satisfy 

~Cn en 2 e ~2C,~ (24) 

A solution to this equation can be found by introducing the Fourier transform 

J) ; (25) 

which is the solution to 

0----~ + e + am = 0 (26) 

Letting 

U(~') = f~ H2(u---~du = ~- + 1 2x0------ ~ -  x~ (1 - e - 2 0 ,  A(~-) = f~ ~ d u  (27) 

we can write the solution to Eq. (26) as 

~r,(co, ~-) = ~r,(o~, 0) exp[-sn2U(-;) - ~oJ2A(~')] (28) 

If  one inverts Eq. (25) using the specific solution, then one finds 

1 
C.(~, r) = [4rr~A(~.)]l/2 exp[-- en2U(~-)] 

-_ ( ) 2  a; '  
• C.(~', 0) exp 4eA(t-ff -~  (29) 

A complete solution for P0(~, % r) can be written in terms of the theta 
function <9~ 

O(p,/3) = ~ exp[inp - n2/3] = 1 + 2 ~ [exp(-n=//3)] cos np 
~=--o0 n=l 

= exp 4/3 
~=--oo 

by substituting Eq. (29) into Eq. (23) and using the inversion formula corre- 
sponding to Eq. (25) to express C,(r 0) in terms of the initial condition. 
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In  this way we find that  

1 '~ ' d f '  
ro(~,  % . )  - 2 ~ [ 4 ~ ( . ) ] ~ , ~  _ , 

( ~ _  ~,)2 (31) x I~(~ ', ~' ,  0)O(~ - ~' ,  ~U(~)) x exp 4~a(~) 

Since U(r)  ~ ~- for  large r, it follows that  0@ - ~0', eU0-)) ,-~ 1 as ~" --> 0o. 
Therefore,  at long times Fo(~, % z) is independent  o f  % which means  tha t  all 
phases are equally l ikely? I f  the phase angle and ampl i tude are initially 
independent  o f  one another ,  that  is to say, P(s a, % 0) can be expressed in 
factorized fo rm as F(~:, % 0 ) =  Fl(~)F2@), then F0(~:, ~, r) retains this 
p roper ty  at all times, as can be seen f rom the representat ion in Eq. (31). Fo r  
times that  are short  enough that  ,U(T) << 1 we can use the second fo rm for  
the theta  functions in Eq. (30) to write 

Po(~:, % ~-) = 4,~[u(~)aO.)],~= d~o' d~:' r ( G  ~o', o) 
- - : g  - - c o  

exp[  ( C -  ~)2 (~ _~o,)2] X (32) [ 4~a(~) 4,u6-) J 

An expansion of  the momen t s  in powers  o f  E can be derived by an exten- 
sion o f  the results cited in Eq. (9). The lowest order  terms in such an expansion 
are 

f, 
( X ( T ) ) ~  ~ J _  d~oJ_ .  H ( ~ +  r)Po(~, % 7)d~ 

~ ~ d~' H(~'  + ~ ) r ( ( ,  ~', o) ds 
- - ~  - - o o  

(9(z)} ,~ d~o' F(~:', 9' ,  O) d~:' = (9(0)} 
- - 0 O  

~ L ( ' )  = (x~(~-)) - (xO'))  ~ 

~a(~) y ~ , ( ~  
~ ~ L ( o )  + . ) _ . . ~  J _ ~  a~(~ ' + ~)r(~' ,  ~ ,  o ) d r '  

2eU(~') ~L(~ )  ~ ~ ( 0 )  + 

3 In their analysis Wang and Lamb do not restrict ~ to an interval of 27r. The convention 
of allowing an unrestricted phase angle leads to the somewhat confusing result that the 
variance of the phase angle tends to infinity with time, whereas if ~ is restricted to a 
fixed interval, the variance tends to a finite limit. 
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(x(~-)~oO-)) - (x(~-))(~o(~-)) 

~ ~ d~ H(~: + ~-)F(~:, % 0) d~: - (~0(0))(x(z)) (33) 

As an illustration of Eq. (33), let us choose the particular initial condition 

p(x ,  w, 0) = 2 .  8(x - Xo) 8(~) (34) 

where we can choose the initial phase angle at cp = 0 without loss of generality. 
Then the initial condition for F(~, ~o; r) is 

P(~, ~o; 0) = 2=G(D 8[H(~) - xo] 8(~o) (35) 

This formula implies, from Eq. (31), that Po(G % r) can be expressed as 

o(~; ~v(~)) (~ 
Fo(~, r ~-) = [ - - ~ - ~ e ~  j_o~ G(~') 8[H($') - Xo] 

( r  ~)~ 
x exp 4eA-(~-) d~' 

0(~;~u(~)) ( ~ ) 
- [47rear)]z/2 exp 4eA--(T) (36) 

The low-order moments are, to a first approximation, given by 

(x(~)) ~ H(,) ,  (~o(,)) ~ 0 
a~,~(Z) 2eA(T)G2('r), 2 "~ %(0(~) "~ 2 e U ( , )  

(xO')~(-r)) - (x(~))(qo(~-)) ,-~ 0 (37) 

Higher order corrections can be calculated by an extension of the technique 
in Ref. 5. 

4. A P P L I C A T I O N  TO THE S M O L U C H O W S K I  E Q U A T I O N  

We next consider the application of the singular perturbation technique 
to the Smoluchowski equation, which can be regarded as a generalization of 
Eq. (1). The most general form of the Smoluchowski equation is (1~ 

~P v. o . v p -  p (38) ~-7 = 

where F is the force acting on a particle, m is its mass, /3 is a relaxation 
constant with dimensions (time)-1, and D is a diagonal matrix (Dll,  D22, 
Daa) which might be required for the description of anisotropic media. We 
assume that none of the coefficients in Eq. (38) depend on time, although this 
refinement can also be handled. To make explicit the basic assumption in the 
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perturbation theory, let us write 

F / m f l  = vg, D = Df, r = Xp (39) 

in which v is a constant with the dimension of velocity, D is constant and 
has the dimensions of  diffusion ( L 2 / T ) ,  X is a characteristic length of the 
system, f and g are dimensionless functions, and p is a dimensionless vector. 
When we introduce these variables into Eq. (39) we obtain the following 
equation in dimensionless variables: 

Op/?z  = Vp.(Ef.V0p -- gp) = EV.f.Vp - g.Vp - p V . g  (40) 

where 

.~ = v t / x ,  E = D / ( v x )  ( 4 1 )  

and the spatial derivatives are taken with respect to p. The assumption basic 
to the use of  perturbation theory is that the broadening of an initial pulse is 
small relative to the distance traveled due to the applied force. An approxi- 
mate solution to Eq. (40) will be sought, comparable to that given in Eq. (8) 
for the one-dimensional problem. In contrast to that case we will not be 
able to write the solution in terms of  an integral and its inverse function but 
rather we show that it can be written in terms of the solution to a first-order 
partial differential equation, hence in terms of  the solution to a set of  ordinary 
differential equations. As we have in the one-dimensional case, we assume 
that Eq. (40) is to be solved in an unrestricted space, or each component  of  p 
satisfies - o o  ~< p~ ~< oo. This excludes angular variables, but the generaliza- 
tion that allows such variables is quite simple and follows the lines leading to 
Eq. (31). 

Equation (40) is to be solved subject to the initial condition 

p(~,  0) = ~(Pi --  Pi0) ~(P2 -- P20) "'" ~ ( P n  - -  PnO) (42) 

where n is the dimension of the space. A first step in deriving an approximate 
solution is to transform the space coordinates to a set of  coordinates that 
follow the motion of a particle in the field of  force F in the absence of dif- 
fusion. To find such a set of  coordinates, consider Eq. (40) with e set equal to 
zero. The corresponding characteristic equations are 

& _ d o i  _ dp~ = do_z. = d p  
- ( 4 3 )  

1 g l  g z  gn pV.g  

The first n equations in this set are just equivalent to the deterministic or 
diffusion free equations clpJd-c = g d p ) .  We will assume that a single-valued 
set of  solutions to this system exists. This allows us to define a set of  coordi- 
nates {~} by 

~, = UdpO - r (44) 
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where 

p~ = H~(~- + ~:~) (45) 

The Hr being the function inverse to U~(u), are the solutions to the deter- 
ministic equations of motion. The constants of integration for Eq. (43) are 
the ~:~ and 

gl(l~)g2(~)"" g,=(~)P(~, ~') = IF' (46) 

generalizing Eq. (3). We can now transform the space variables to the f~ and 
the dependent variable to I~(~, ~,). For simplicity in writing out the final 
result we define the function 

V(g, T) = G1(~1 + ~)G2(~:2 + ~-)." G,(~:, + -r) (47) 

Then 17(~, ~-) satisfies the equation 

1 0 F2 ~ (~)  1 8 F,= 0 ( ~ ) )  (48) 
+ G20~z G2 ~2 + "'" + G"~ "~,, Gn ~,~ 

subject to the initial condition 

I'(~, 0) = V(~, 0) ~(Hz(~:l) - plo) 3(Hz(f2) - p2o) "'" 3(H~(~,) - p,o) (49) 

when one has an initial delta function condition in the o~ variables. 
Equation (48) is still exact. To derive the lowest order approximation 

Po(~, r), we evaluate all of the coefficients appearing on the right-hand side 
of Eq. (48) at f = 0. This yields the equation 

" 2 
81"o F,(,) e ro 

= = * ( 5 0 )  
~r ~= 1 ~= 1 0~i 2 

where we have used the definition 

A,(~-) = [F,(u)/G,2(u)] du (51) 

The solution to Eq. (50) can be found by introducing the Fourier transform 

0(~; 7) . . . .  17o(~; 7) exp(ito.~) d"~ (52) 
c o  

which is found from Eq. (50) to be 

0(to; r ) =  0(to; 0 ) e x p [ - e  ~,=1Ar(T)C~ (53) 
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But this implies that  Po(g; r) can be expressed as 

1 
Po(g; r) = (4rrE)~t2(A1A2 ... A.)1f2 

x --- F (~ ' ;0 )  exp - ~ ( f r ' -  ~,)2 d~g 
- - o o  T = I  

= (4we),~/z(A1A2 ... An)~f2 exp_ - ~z=~ 4eA~] (54) 

generalizing Eq. (8). 
Higher order approximations to the solution can be found by the same 

technique as given in Ref. 5. A Gaussian approximat ion to the solution can 
also be given that  generalizes the result o f  Eq. (12) in an obvious way. 
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